On the Laplacian Estrada Index of a Graph
نویسندگان
چکیده
Let G = (V,E) be a graph without loops and multiple edges. Let n and m be the number of vertices and edges of G, respectively. Such a graph will be referred to as an (n,m)-graph. For v ∈ V (G), let d(v) be the degree of v. In this paper, we are concerned only with undirected simple graphs (loops and multiple edges are not allowed). Let G be a graph with n vertices and the adjacency matrix A(G). Let D(G) be a diagonal matrix with degrees of the corresponding vertices of G on the main diagonal and zero elsewhere. The matrix L(G) = D(G) − A(G) is called the Laplacian matrix of G. Since A(G) and L(G) are real symmetric matrices, their eigenvalues are real numbers. So we can assume that λ1 ≥ λ2 ≥ · · · ≥ λn, and μ1 ≥ μ2 ≥ · · · ≥ μn = 0 are the adjacency and the Laplacian eigenvalues of G, respectively. The multiset of eigenvalues of A(G) (L(G)) is called the adjacency (Laplacian) spectrum of G. Other undefined notations may be referred to [1]. The basic properties of the eigenvalues and Laplacian eigenvalues of the graph can be found in the book [2].
منابع مشابه
The Signless Laplacian Estrada Index of Unicyclic Graphs
For a simple graph $G$, the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$, where $q^{}_1, q^{}_2, dots, q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$. In this paper, we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...
متن کاملAlbertson energy and Albertson Estrada index of graphs
Let $G$ be a graph of order $n$ with vertices labeled as $v_1, v_2,dots , v_n$. Let $d_i$ be the degree of the vertex $v_i$ for $i = 1, 2, cdots , n$. The Albertson matrix of $G$ is the square matrix of order $n$ whose $(i, j)$-entry is equal to $|d_i - d_j|$ if $v_i $ is adjacent to $v_j$ and zero, otherwise. The main purposes of this paper is to introduce the Albertson ...
متن کاملEstrada and L-Estrada Indices of Edge-Independent Random Graphs
Let G be a simple graph of order n with eigenvalues λ1, λ2, · · · , λn and normalized Laplacian eigenvalues μ1,μ2, · · · ,μn. The Estrada index and normalized Laplacian Estrada index are defined as EE(G) = ∑n k=1 e λk and LEE(G) = ∑n k=1 e μk−1, respectively. We establish upper and lower bounds to EE and LEE for edge-independent random graphs, containing the classical Erdös-Rényi graphs as spec...
متن کاملOn Relation between the Kirchhoff Index and Laplacian-Energy-Like Invariant of Graphs
Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-1<...
متن کاملOn Eccentricity Version of Laplacian Energy of a Graph
The energy of a graph G is equal to the sum of absolute values of the eigenvalues of the adjacency matrix of G, whereas the Laplacian energy of a graph G is equal to the sum of the absolute value of the difference between the eigenvalues of the Laplacian matrix of G and the average degree of the vertices of G. Motivated by the work from Sharafdini an...
متن کاملLaplacian Estrada and Normalized Laplacian Estrada Indices of Evolving Graphs
Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacia...
متن کامل